L'effet isotopique de l'ozone : observations, études, rôle et applications

Christof JANSSEN

29èmes Journées Françaises de Spectrométrie de Masse à Orléans

UPANC SORBONNE UNIVERSITÉS

> Sciences de environnement Sciences de Simon Laplace

Antarctic Ozone Hole Sep 2006

Ozone on Ganymede

Noll *et al., Science* **273** (1996), Hubble photograph presented at AAS meeting in 1995, courtesy NASA

Overview

- introduction
 - ozone, isotope enrichment, history
 - measurement techniques
- Iaboratory studies on ozone formation
 - enrichment experiments
 - kinetic studies
- decomposition pathways
 - photolysis
 - other reactions
 - thermal decomposition

- theory and models
- atmospheric observations
 - measurement and sampling
 - stratosphere, troposphere
- isotope transfer processes
 - carbon dioxide
- conclusions & outlook

Ozone

3-atomic allotrope of oxygen

 $E_0 = 1.05 \text{ eV}, \lambda_{\text{diss}} < 1180 \text{ nm}$

Oxygen Isotopes:

¹⁶ O	99,756 %
¹⁷ O	0,039 %
¹⁸ O	0,205 %

δ - notation

Standard definition -

The fraction of a heavy isotope in a compound (atom ratio):

$${}^{17}R = \frac{{}^{17}O}{{}^{16}O}, \quad \delta^{17}O = \frac{{}^{17}R_{\text{sample}}}{{}^{17}R_{\text{std}}} - 1, \quad (\text{in \% or \%})$$

More specific -

Ratios of individual isotopomer ratios (clumped isotopes):

$$E({}^{16}O{}^{16}O{}^{17}O) = \frac{\left(\left[{}^{16}O{}^{16}O{}^{17}O\right] / \left[{}^{16}O{}_{3}\right]\right)_{\text{sample}}}{\left(\left[{}^{16}O{}^{16}O{}^{17}O\right] / \left[{}^{16}O{}_{3}\right]\right)_{\text{std}}} - 1$$

Standard (std) abundance from molecular oxygen

O-Isotopes in early solar system solids

Allende meteorite (fall 1969):

Triple oxygen isotope composition of refractory inclusions (CAI)

Isotope Fractionation of Stratospheric Ozone

Enrichment measurements

O-Isotopes in the environment

Oxygen isotope anomalies in nature (MIF)

adapted from Thiemens, Ann Rev Earth Planet Sci 34 (2006)

Detection Techniques

O₃: TDLAS @ 1000 cm⁻¹

O₂, CO₂: IRMS & CeO₂-Exchange

ThermoFinnigan, Delta Plus^{XL}

Less Direct Measurement Techniques

- isotope ratio mass spectrometry of O₂ after conversion of O₃ ⇒ total/ isotopologue enrichment
- conversion on reactive surfaces (Ag), measure residual $O_2 \Rightarrow$ increase importance of central atom
 Bhattacharya et al. JGR 113 (2008)
- reaction of $NO_2 + O_3 \rightarrow NO_3 + O_2 \Rightarrow$ enrichment in terminal atom (isotopomer specific)
 Michalski and Bhattacharya et al. PNAS 14 (2009)
 Vicars et al. RCMS 26 (2012)

Ozone generation methods

El. Discharge $O_2 + e^- \rightarrow O + O^-$

 $O + O_2 + M \rightarrow O_3 + M$

 $O + O_3 \rightarrow 2 O_2$

many others

<u>Photolysis</u>

 $O_3 + hv \rightarrow O_2 + O$

 $O + O_2 + M \rightarrow O_3 + M$

Morton et al. *JGR* **95** (1990)

Water Electrolysis

Anode: $3H_2O \rightarrow O_3 + 6H^+ + 6e^-$

Enrichment measurements

thermodynamic (atom exchange) and **kinetic** fractionation effects

$$O = {}^{16}O, \quad Q = {}^{18}O$$

$$Q + O_2 \rightleftharpoons OQ + O$$

$$\frac{[Q]}{[O]} = {}^{1}\frac{[OQ]}{K_{eq}(T)} \frac{[OQ]}{[O_2]}$$

Kaye & Strobel, *JGR* 88 (1983)

Mauersberger et al., GRL 20 (1993)

Temperature Dependence

Janssen et al. CPL 367 (2003)

Pressure dependence

Heterogeneous ozone formation

Janssen & Tuzson, JCPA (2010)

Heterogeneous ozone formation

Janssen & Tuzson, JCPA (2010)

Rate coefficients

Rate coefficients

Janssen et al., PCCP 3, 2001

Pressure & bath gas dependence of rates

Guenther et al., CPL 306 (1999)

Guenther et al., CPL 324 (2000)

Temperature dependence of rates

Modeling of O₃ photolysis

Photolysis measurements

Remark:

Cross section measurements exist only for ¹⁶O₃ and ¹⁸O₃ Photodecomposition measurements suffer from side reaction:

 $0_3 + h\nu \rightarrow 0 + 0_2$ $0 + 0_3 \rightarrow 20_2$

Light source	Q 18	Reference			
MW-Hg lamp	1.019	Bhattacharya & Thiemens GRL 15 (1988)			
Nd-Yag @ 532 nm	1.017	Wen & Thiemens CPL 172 (1990)			
Hg lamp	1.016	Wen & Thiemens CPL 172 (1990)			
Hg lamp	1.017	Chakraborty & Bhattacharya JCP 118 (2003)			
630, 520 nm	1.015	Chakraborty & Bhattacharya JCP 118 (2003)			

Thermal reactions

 $O_3 + XO \rightarrow O_2 + XO_2$ $O_3 + X \rightarrow O_2 + XO$ $X = NO, NO_2, Br, CI, OH$

are important reactions that determine the concentration and isotope balance of ozone.

Have not been measured yet.

Thermal decomposition

Formation

- $O + O_2 + M \rightarrow O_3 + M, \ k = 6.0 \cdot 10^{-34} (300/T)^{2.5} \text{ cm}^6 \text{ molec.}^{-2} \text{ s}^{-1}$
- strong isotope fractionation (> 10%, T > 50°C)
- symmetry plays important role

Decomposition

 $O_3 + M \rightarrow O + O_2 + M, k = 1.65 \cdot 10^{-9} \exp(-11435/T) \text{ cm}^3 \text{ molec.}^{-1} \text{ s}^{-1}$

- 2 measurement attempts : small isotope fractionation (< 2.2%, T ~ 100°C)</p>
- > systematic errors (wall decomposition, side reaction $O + O_3 \rightarrow 2O_2$)
- studies are not symmetry resolved

Model comparison

Model	Reference	Parameters	Features	
Angular Scattering Model	Robert & Camy-Peyret, Ann. Geophys. (2001)	5	p, T = 300 K	
Classical Trajectories	Schinke et al. Ann Rev Phys Chem. (2006)	2	highly accurate ab-initio PES	
Modified RRKM	Gao & Marcus, JCP (2002)	2 for each T, ET & non RRKM factor	р, Т	
Vibrational Excitation Model	Miklavc & Peyerimhoff, CPL (2002)	1	low p, T = 300 K, no exchange	
QM scattering VCC-IOS	Charlo & Clary, JCP (2004)	0	low p, T, fixed geometry	
QM scattering approach	Babikov et al., JCP (2003)	0	low p, $J = 0$	

Cryogenic samplers

Tropospheric data

Outskirts of Heidelberg, Germany 49.4°N (n = 49)

Tropospheric Data

Summary tropospheric data

location	period	n	<i>p</i> (hPa)	<i>T</i> (K)	δ ¹⁷ Ο (%)	δ ¹⁸ Ο (%)
Heidelberg	7/94-9/94	47	975	298	7.1 ± 0.3	9.1 ± 0.2
La Jolla	1/95-4/96	29	1015	292	6.9 ± 0.2	8.2 ± 0.2
WSMR	3/95	6	874	290	7.8 ± 0.3	9.0 ± 0.3
Pasadena	9/95	7		301	6.6 ± 0.2	8.6 ± 0.4
Brenninkmeijer et al., CR 103 (200						

Stratospheric ozone

Polar latitudes (67.9°N, 65°N):

Kiruna, SUE & Fairbanks, AI (5.1°S):

Mid nortern (34°N),

Fort Sumners, NM

Haverd et al. GRL **32** (2005)

Stratospheric ozone

Modeling of O₃ photolysis

Isotope transfer into CO₂

 $\delta^{17}\mathrm{O}/\delta^{18}\mathrm{O}=1.7$

Mechanism (Yung et al. *JGR* **102** (1991)), complemented by Perri et al. *JCPA* **108** (2004)

 $O_3 + h\nu \rightarrow O(1D) + O_2$ $O'(^1D) + CO_2 \rightarrow O(^3P, ^1D) + COO'$

other data show variable or different $\delta^{17}O/\delta^{18}O$

Lämmerzahl et al. GRL 29 (2002)

Shaheen et al. ACP 7 (2007)

Current Projects on Thermal Decomposition

ANR - IDEO (no ANR-09-BLAN-0022-03)

Isotope and Dynamic fffects in Excited Ozone

ITN FP7 - INTRAMIF (no 237890)

International Teching Network on Mass Independent isotope Fractionation

Conclusion and Outlook

- Anomaly has kinetic origin
- Are there other molecules ?
- Can we predict isotope anomalies ?
- Studies on ozone decomposition are missing
- Agreement between lab and atmosphere ?

- Role of ozone decomposition processes
- Isotope transfer: What do we miss in O(¹D) + CO₂?