

Université d'Orléans Institut de Chimie Organique et Analytique

'Intensity ion fading-SALDI MS approach for searching inhibitors of tyrosinase in complex mixtures'

Aleksander Salwiński

Prof. Benoit Maunit, Prof. Raphaël Delépée

29^{èmes} Journées Françaises de Spectrométrie de Masse, 17-20 sept. 2012, Orléans (France)

General outlook of the new approach

Enzyme coupled nanoparticle-assisted LDI (ENALDI) principle

MPs characterisation

• Stability:

Free tyrosinase looses **55% of the initial activity** within approx. 17-20 days ^[1,2] when stored at 4°C. MPs-immobilized tyrosinase looses 55% of initial activity up to 70-75 days.

Protein binding capacity:

245 mg of BSA/g of MPs

Enzyme coupled nanoparticle-assisted LDI (ENALDI) highligts

On a single spot:

- Total amount of MPs: **3.47 μg**;
- amount of tyrosinase enzyme bound to MPs: approx. 800 ng (6.5 pmol);
- amount of plant extract (equivalent of dry mass of plant powder): 300-450 ng;

Dual function of magnetic nanoparticles:

- enzyme carrier;
- energy absorber: nanoparticle-assisted ionization is believed to be generated by heat released upon the laser shot

Experimental:

- Bruker Autoflex with MTP 384 standard target plate (polished steel)
- number of LASER shots: 300
- MS spectra collected in a negative mode

Exemplary ENALDI spectra of raw aqueous extract of licorice (Glycyrrhiza glabra) root

• significant drop of the ion response for 209.0 and 577.1 m/z ions

Enzyme coupled nanoparticle-assisted LDI (ENALDI) principle

Exemplary ENALDI spectra of raw **aqueous** extract of licorice (*Glycyrrhiza glabra*) root

• re-appearance of the ion [M-H]⁻: 209.0 m/z after treatment of MPs with 0.1% solution of formic acid **directly on the spot**

Statistical description of the data

Raw methanol extract of licorice

Searching for the inhibitor

M.A. Farag et al./Phytochemistry 76 (2012) 60-72

Table 2

Compounds assigned in Glycyrrhiza species methanol extract by LC-MS.

	No.	rt (min)	UV max	Identification	Aglycone class	[M-H] ⁻ (<i>m</i> /z)	Error(ppm)	El. Comp.	MS ⁿ ions	
	1 2	5.58 9.22	275 270, 315	Unknown Glucoliguiritin	Flavanone	209.0453 579.1698	+1.14 -1.5	C ₁₀ H ₉ O ₅ C ₂₇ H ₃₁ O ₁₄	165, 121 417, 255	
L	-			Ľ				-27-51-14	,	
Isoliquiritigenin , known tyrosinase inhibitor ^[1] H_{0}									он	
(H;	2N	И ОН	 Liquiritigenin	ОН	н о		Isoviolant	hin	
			י י			HO	он			
	L-t	yrosine			How Licuraside					
[1]	[1] J Agric Food Chem. 2003 , 51, 1201-1207									

Structural identification of the inhibitor

Kinetic test of purified compound

K_I = 291 μM

Conclusions

Advantages of ENALDI approach:

- simplified study of complex extracts (no pre-treatment, purification is limited to prospective inhibitors, no laborious fractionation required);
- high stability of MPs (45% of initial activity after 80 days of storage in 4°C);
- high homogeneity of the sample: no 'sweet spots' on the MALDI plate;
- possibility to distinguish substrate and inhibitor;
- magnetic properties of beads: easy purification, no centrifuge required;
- low protein consumption per analysis (approx. 6.5 pmol)

Further development

- improvement of S/N ratio in low mass range