FORMATION, CHARACTERIZATION AND REACTIVITY OF GASEOUS ADDUCT OF CARBON DIOXIDE TO MAGNESIUM Héloïse Dossmann (Soldi-Lose)¹, Carlos Afonso^{1,2}, Denis Lesage¹, Jean-Claude Tabet¹, Einar Uggerud³ - 1 Institut Parisien de Chimie Moléculaire, Université Pierre et Marie Curie, UMR 7201- FR2769, 4 Place Jussieu, F-75252 Paris Cedex 05 - 2 Université de Rouen, UMR CNRS 6014 COBRA, 1 rue Tesnière, F-76130 Mont-Saint-Aignan - 3 Massespektrometrilaboratoriet og Senter for teoretisk og beregningsbasert kJemi (CTCC), kJemisk institutt, Universitetet i Oslo, Postboks 1033 Blindern, N-0315 Oslo Activated forms of carbon dioxide are of great interest due to the relevance to photosynthetic CO_2 uptake and to sequestration of CO_2 from flue gases formed upon the burning of fossil fuels. One efficient fixation of carbon dioxide by covalent C-C bond formation is schematically described as $RX + CO_2 + 2\bar{e} \rightarrow RCO_2^- + X^-$. In plant cells, electrons are provided from chlorophyll via NADPH2 and formation of a bond between C-atoms of CO_2 and of another substrate occurs at the magnesium centered active site of the enzyme RuBisCO. In this context, we report here on the gas-phase characterization of a novel and fragile structural form of carbon dioxide bonded to magnesium, $HOMgCO_2^-$ showing interesting reactivity features. Electrospray ionization was applied to mixtures of oxalic acid and magnesium salts MgCl₂ and MgBr₂ dissolved in CH₃OH/H₂O (v/v 90/10). From the recorded mass spectra, signal corresponding to the MgC₂O₅H ion was observed. Upon collisional activation, this ion dissociates by losing CO₂, 2CO₂ and MgC₂O₄ leading to the formation respectively of HOMgCO₂, HOMg and HO. Different structures are probed theoretically for the ion of interest, HOMgCO₂ as well as its mechanism of formation from the MgC₂O₅H ion. Results show that two structures are conceivable for this ion, HOMg(η^2 -O₂C) and HOMg(η^2 -OCO) whose energies are distinguished by a difference of by 31 kJ/mol, the other forms being higher by at least 69 kJ/mol. Furthermore, the complex shows a strong reactivity towards water which is present as a trace in the collision cell of the mass spectrometer. This reaction leads to the formation of a unique ion, Mg(OH)₃. Theoretical study of the mechanism of formation of this ion reveals a very exothermic pathway specifically from the HOMg(η^2 -O₂C) form. As will be discussed, this supports the hypothesis of the presence of only one structure for HOMgCO₂, *i.e.* HOMg(η^2 -O₂C). Finally, the reaction of the complex with CH₃Cl is investigated. Several product ions are observed, in particular Cl and CH₃CO₂ that are issued from a S_N2-type reaction.